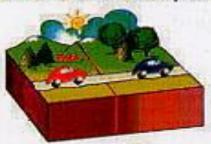

I TERREMOTI

- I terremoti (o sismi) sono movimenti più o meno violenti, rapidi ed improvvisi, della crosta terrestre.
- Le rocce della crosta terrestre sono sottoposte a compressioni e stiramenti che tendono a deformarle: esse, in questo modo, accumulano energia elastica.
- Raggiunto il carico di rottura, le rocce si spezzano liberando improvvisamente energia meccanica sotto forma di oscillazioni e scuotimenti



Le rocce della crosta terrestre sono sottoposte a sforzi causati dai movimenti delle placche... ...esse quindi si deformano e si rompono

Posizione originale: senza defermazione

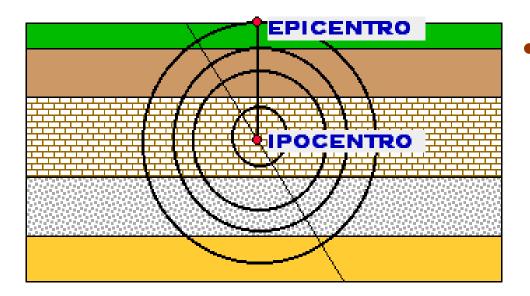
Accumulo di energia:

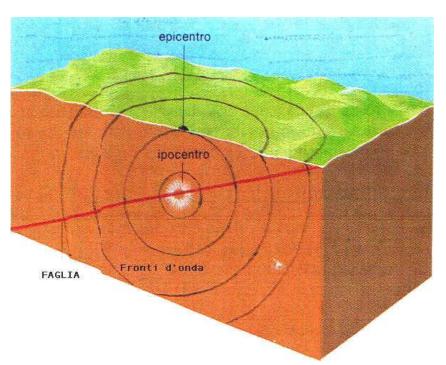
deformazio

Rottura con rilascio di energia:

Terremete

Sportamento permanente


Il terremoto si genero nel momento in cui le roccie si rompe; le feglio rappresenta le superficie di rotturo della roccie.



I terremoti sono quindi vibrazioni della crosta terrestre, provocate da un'improvvisa liberazione di energia in un punto profondo della crosta terrestre; da questo punto si propagano in tutte le direzioni una serie di onde elastiche, dette onde sismiche.

I terremoti possono essere:

- Vulcanici: legati alla presenza di un vulcano del quale spesso preannunciano l'imminente attività
- Da franamento: originati dal crollo di cavità sotterranee
- Tettonici: legati al movimento delle zolle

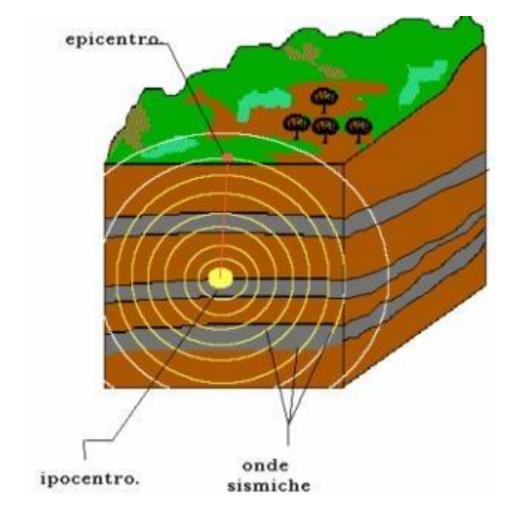
- Ipocentro: luogo, più o meno profondo, dove si è verificata la rottura delle rocce
- Epicentro: luogo della superficie terrestre che si trova immediatamente sopra l'ipocentro

 Quando l'ipocentro è localizzato sui fondali marini (maremoto o tsunami) le onde sismiche si propagano nell'acqua dando origine ad onde sempre più alte in prossimità delle coste

Secondo la profondità dell'ipocentro un terremoto è detto

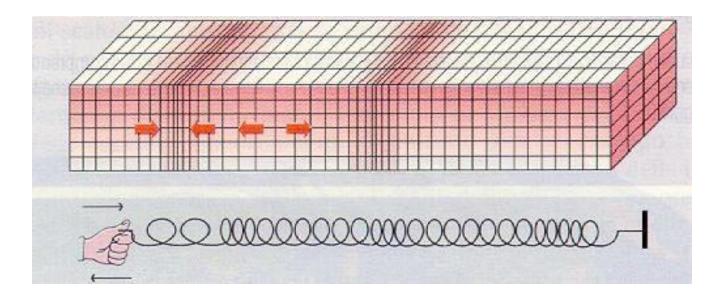
Superficiale

=

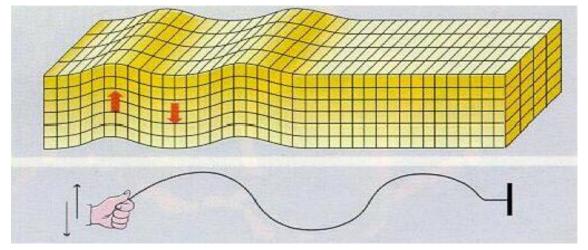

Ipocentro a meno di 60 km

Intermedio

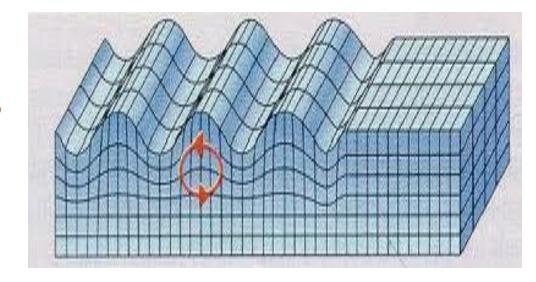
lpocentro tra 70 km e 300 km **Profondo**


Ipocentro a più di 300 km

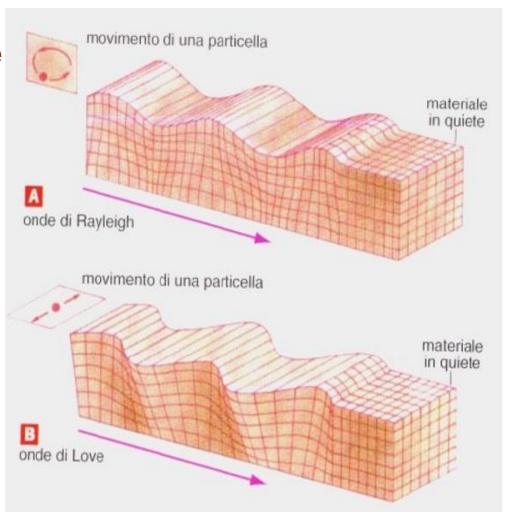
Dall'ipocentro l'energia del terremoto si propaga sotto forma di onde sismiche che possono essere longitudinali o trasversali


Le onde longitudinali:

- si possono immaginare come onde ottenute facendo oscillare avanti e indietro una molla, ancorata ad un'estremità
- sono anche dette primarie (P) perché sono le più veloci (anche 10 km al secondo)
- possono attraversare solidi, liquidi e gas
- le particelle di materia attraversate da tali onde oscillano avanti e indietro nella stessa direzione di propagazione dell'onda

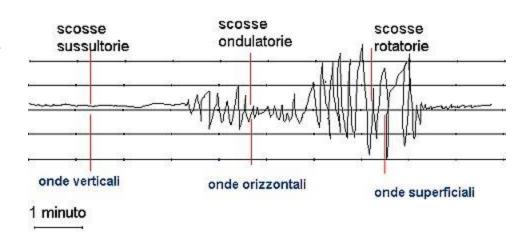

Le onde trasversali:

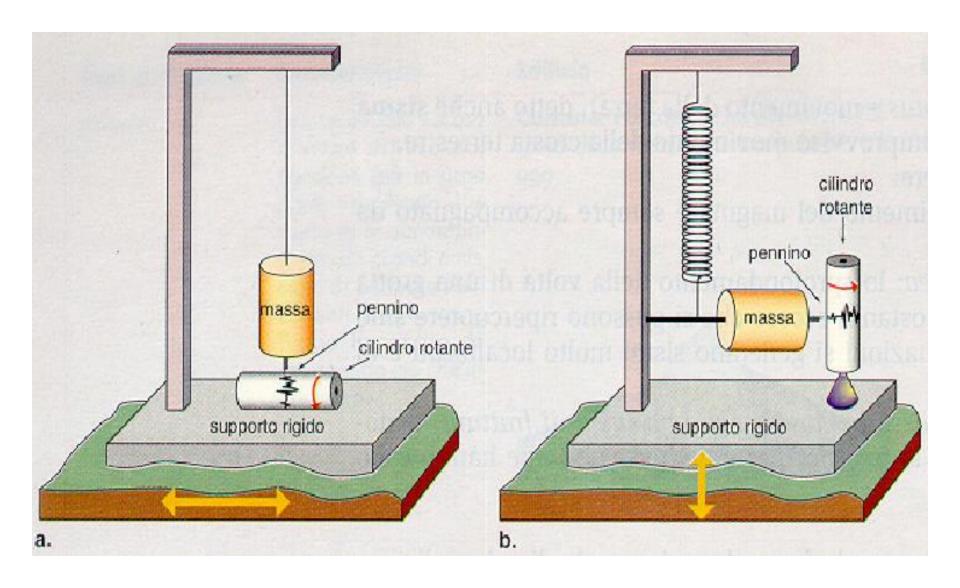
- si possono immaginare come onde ottenute facendo oscillare dal basso verso l'alto una fune, ancorata ad un'estremità
- sono anche dette secondarie (S)
- la loro velocità è fra 2,3 e 4,6 km/s.
- possono attraversare solidi e gas
- le particelle di materia attraversate da tali onde oscillano perpendicolarmente rispetto alla direzione di propagazione dell'onda



Quando le onde P ed S giungono in superficie si originano altre onde sismiche, dette **superficiali**, che cominciano a propagarsi in modo concentrico sulla superficie terrestre.

- Sono le onde più lente
- Derivano dalla
 combinazione delle
 onde P e delle onde S
 e sono perciò molto
 complesse
- Si propagano sulla superficie terrestre causando i danni più gravi


- Vi sono due tipi di onde superficiali: le onde di Rayleigh e le onde di Love
- Le onde di Rayleigh sono più lente delle onde P ed S ed assomigliano a quelle che si propagano quando un sasso viene lanciato in uno stagno. Esse fanno vibrare il terreno secondo orbite ellittiche rispetto alla direzione di propagazione dell'onda.
- Le onde di Love fanno vibrare il terreno sul piano orizzontale



IL SISMOGRAFO

- E' lo strumento che ci permette di registrare le onde sismiche
- E' costituito da una base fissata al suolo a cui è collegata una molla che termina con un pennino
- Quando la base oscilla, a causa di un terremoto, il pennino lascia una traccia (sismogramma) su un cilindro che ruota

Come si classificano i terremoti?

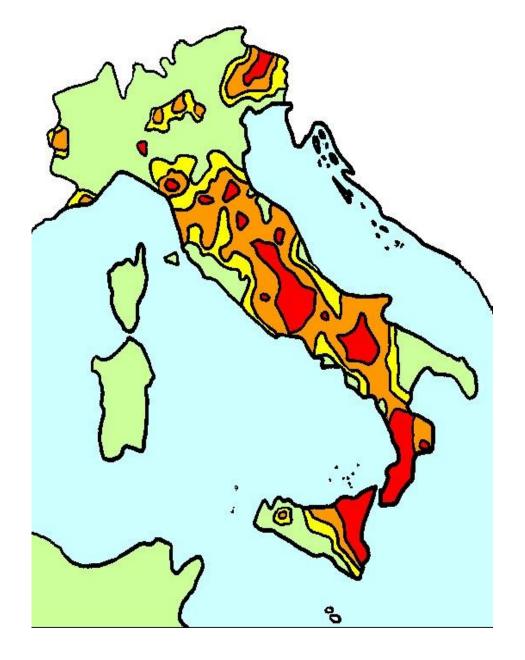
Per classificarli si usano due scale:

- 1) scala Mercalli
- 2) scala Richter

LA SCALA MERCALLI

- è una scala che classifica l'intensità di un terremoto valutando gli effetti che ha provocato sulle persone o sulle cose
- è suddivisa in dodici gradi
- deriva dal nome di Giuseppe Mercalli, sismologo e vulcanologo famoso in tutto il mondo, che nel 1902 espose alla comunità scientifica la sua prima scala formata però da 10 gradi. Successivamente due sismologi americani modificarono la scala Mercalli aggiungendo 2 gradi.

	(MC	CS)
GRADO	TIPO DI SCOSSA	CARATTERISTICHE ED EFFETTI
ľ	STRUMENTALE	Il terremoto è registrato soltanto dagli strumenti e passa inosservato alle persone.
11	LEGGERISSIMA	Percepito ai piani alti delle case da persone sensibili.
Ш	LEGGERA	Percepito da più persone, oscillazione di oggetti appes e vibrazioni.
IV	MEDIOCRE	Oscillazioni e vibrazioni anche di automezzi, tintinnio di vetri, vibrazione di vasellame, scricchiolio di pareti.
٧	FORTE	Scossa che sveglia chi dorme, scricchiolii, tintinnii, spavento; cadono calcinacci.
VI	MOLTO FORTE	Fa fuggire le persone all'aperto, produce rumori e boati, fa cadere oggetti pesanti, provoca qualche lesione agli edifici.

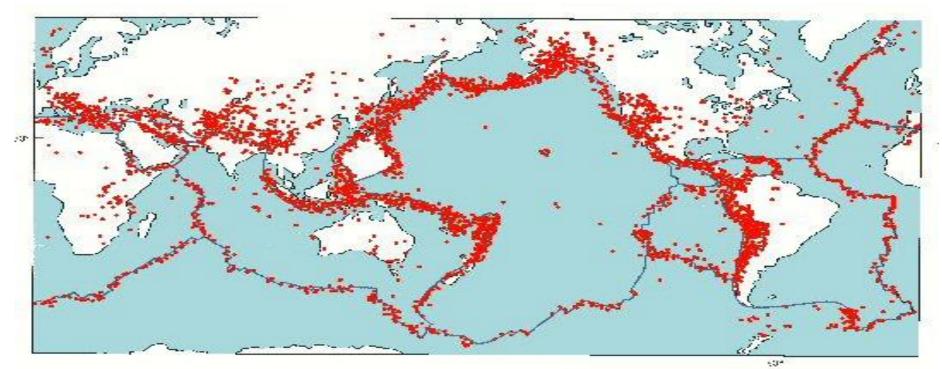

VII	FORTISSIMA	Provoca panico, caduta di intonaci, camini e tegole,rottura di vetri, danni di scarsa entità ai muri, piccole frane in materiali sciolti, suono di campane, onde sugli specchi d'acqua.
VIII	ROVINOSA	Si sente anche guidando automezzi, danneggia murature non di cemento armato; provoca la caduta di torri, palizzate, aberi e l'apertura di crepe nel suolo.
ıx	DISASTROSA	Distrugge edifici non particolarmente resistenti, rompe tubazioni sotterranee, provoca ampie crepe nel terreno, apre crateri con espulsione di sabbia e fango.
х	DISASTROSA	Distrugge buona parte degli edifici, danneggia dighe ed argini, devia fiumi e rotaie, provoca grandi frane, sposta orizzontalmente i terreni che si sono fessurati.
ΧI	CATASTROFICA	Rovina completamente gli edifici, rompe ogni tubazione, tronca le comunicazioni, provoca un gran numero di vittime.
XII	GRANDE CATASTROFE	Distrugge ogni opera umana, sposta grandi masse rocciose, lancia in aria oggetti, provoca grandi frane e può causare migliaia di vittime.

Effetti di scosse poco profonde in zone abitate	Magnitudo approssimata
Distruzione quasi totale	>8,0
Danni elevati	>7,4
Đanni gravi Notevoli danni alle	7,0 - 7,3
strutture	6,2 - 6,9
Deboli danni alle strutture	5,5 -6,1
Percepito da tutti	4,9 - 5,4
Percepito da parecchi	4,3 - 4,8
Percepito da alcuni	3,5 - 4,2
Registrato ma non percepito	2,0 - 3.4

SCALA RICHTER

- Misura la
 magnitudo di un
 terremoto cioè
 l'energia
 effettivamente
 sprigionata
- Ha valori compresi tra 0 e 8,7

 Ogni giorno sulla Terra si verificano migliaia di terremoti; solo qualche decina sono percepiti dalla popolazione e la maggior parte di questi ultimi causano poco o nessun danno. La durata media di una scossa è molto al di sotto dei 30 secondi; per i terremoti più forti, però, può arrivare fino a qualche minuto



I terremoti non sono distribuiti in misura uniforme sulla superficie terrestre, ma si manifestano quasi esclusivamente in alcune fasce del pianeta.

Sono quasi tutti sono localizzati in corrispondenza dei margini delle placche litosferiche, lungo le fosse oceaniche, le catene montuose recenti e le dorsali oceaniche.

Si può inoltre constatare che esse coincidono con le zone di intensa attività vulcanica.

Circa l'80% dei terremoti si verifica in corrispondenza della Cintura di Fuoco circumpacifica

